
Simulation-Based Believable
Procedurally Generated Video-Game

Villages
L.M. Clappers

Master Thesis DKE-21-50

Thesis submitted in partial fulfillment

of the requirements for the degree of Master of Science

of Artificial Intelligence at the Department of

Data Science and Knowledge Engineering

of the Maastricht University

Thesis Committee:
Dr. M.J.B. Stephenson

Prof. dr. M.H.M. Winands

Maastricht University
Department of Data Science and Knowledge Engineering

Maastricht, The Netherlands

August 23, 2021

Abstract

This master thesis explores a new method for procedurally generating villages in videogames.
Designing villages is a time-consuming and expensive aspect of videogame design. Through
procedurally generating villages, some of this burden could be taken away from designers. The
implementation described in this thesis uses needs-based AI to simulate the needs of a growing
village, applied to the videogame Minecraft. At every tick, the different needs of the village (for
example food or housing), get decreased by a specified amount. Every type of structure satisfies
the needs of the village differently. This leads to a generator that produces villages in a similar
way to how they would develop in the real world. This kind of generator has many variables,
that are initially set to values that intuitively make sense. Using an evolutionary algorithm, the
values of these variables are tuned to fit different fitness functions, in order to become a more
believable generator. The variables tuned are concerned with two aspects of placing buildings:
which buildings get placed when, and where these buildings get placed. There are four different
fitness functions, and five resulting types of villages: the Historical fitness function tries to
optimize for a village that is most historically accurate, and the Balanced fitness function uses
the ideas from the Historical function, but uses them in a less rigid manner. The Spread- and
Need-based fitness functions focus solely on where to place a structure or what structure to place,
respectively, and the Random generator places buildings completely randomly. For all four fitness
functions a generator is trained, and for all five generator types a village is generated in three
different biomes. A survey is performed on the results of these generators. All participants in
the survey are shown short clips of the different villages, and asked about the immersion, fun,
and realism that they would experience if they were exploring these villages in Minecraft. These
three factors together were argued to be a good indicator of believability. The results of this
survey indicate that the Balanced generator is capable of producing believable villages, but that
this is also biome-dependent. Furthermore, it did show that the Historical generator did not
perform satisfyingly, since this generator under-performed in every biome. This indicates that
"true realism" is not necessary for making gamers experience realism.

Contents

1 Introduction 3
1.1 Concepts . 3

1.1.1 Procedural Content Generation for videogames 3
1.1.2 Believability . 3
1.1.3 Village . 4

1.2 Motivation . 4
1.3 Problem Statement and Research Questions . 5
1.4 Thesis Outline . 5

2 Background and Related Works 6
2.1 Procedural Content Generation . 6

2.1.1 Search-based Procedural Content Generation 6
2.1.2 Mixed Initiative . 8
2.1.3 Evaluating Content . 9

2.2 Related work . 9
2.2.1 Terrain Generation . 9
2.2.2 Village Generation . 10
2.2.3 Simulation of Needs . 10

3 Generative Design in Minecraft (GDMC) 12
3.1 Competition . 12

3.1.1 Grading Criteria . 12
3.1.2 Chronicle Challenge . 13
3.1.3 Changes in 2021 . 13

3.2 Earlier Submissions . 14

4 Building the Generator and Optimization 18
4.1 Simulation-based village generation . 18

4.1.1 MCEdit . 18
4.1.2 Simulation algorithm . 18

4.2 Search-based Approach . 22
4.2.1 Content Representation . 23
4.2.2 Selection . 23
4.2.3 Evaluation Functions . 23

1

5 Experiments and Results 26
5.1 Training the EA . 26

5.1.1 Parameters . 26
5.1.2 Training process . 27
5.1.3 Results . 29

5.2 Validating Believability . 29
5.2.1 Survey . 32
5.2.2 Results . 32

6 Conclusion and Discussion 37

7 Further research 39
7.1 Simulation . 39
7.2 Aesthetic Improvements . 40
7.3 Expanding the Search . 40
7.4 Different Applications . 41

2

Chapter 1

Introduction

This chapter is the introduction to this thesis about procedurally generating villages for videogames.
First, the concepts that are relevant to this thesis are explained, then the motivation for this research
is discussed, after that the problem statement and the three research questions are made explicit,
and finally the outline of this thesis is given.

1.1 Concepts

In this section, concepts that are relevant for this thesis are explained. Those concepts are:
procedural content generation, specifically for videogames, believability in videogames, and what
is meant by a village in this thesis.

1.1.1 Procedural Content Generation for videogames

Procedural content generation (PCG) can be defined as the creation of game content with little to
no input from a human [1]. Game content here can mean a range of things one would encounter
in a game: from story to textures, from entire levels to characters. PCG can be used for a variety
of reasons: to create more content than would be achievable by human designers, to enhance the
replayability of a game, to make a game adapt to the player, or to make a type of game that would
not be possible without PCG.

1.1.2 Believability

In this thesis, the concept of believability is fundamental, but this concept can be difficult to define.
Broadly speaking, in this thesis when the believability of content is discussed, what will be meant
is it is easy to believe that the thing you are seeing would exist in that world. It can also be defined
as making it easy to suspend disbelief: if there are no jarring reminders that this is not the real
world, then the content might be considered more believable. Believability is important because it
contributes to a feeling of presence or immersion: when gamers feel "inside" the game [2].

Believablity does not have to go together with realism. Often what humans consider to be
believable is not the same as what would be realistic. Many games for example fiddle with
percentage chance that are displayed to the player, because showing the player accurate chances
would make them feel it is unfair. A player who does not hit a 33% percent chance 3 times in a
row would feel like the game is cheating, so game designers often choose to use different internal
chance calculations than those that are presented to the player [3]. Furthermore, sometimes realism

3

does not work within the fiction of the game in question. Having your player character need
to use the bathroom, for example, would be distracting and would take you out of the game.
Experienced realism however does seem to go well with believability. If what is seen in a game
feels realistic (even though it might not be completely true to life) it will enhance how easy it is to
believe the scenario presented.

1.1.3 Village

Since this thesis is about generating villages, it is useful to define the term village as used
throughout this thesis. The Cambridge dictionary defines village as "a group of houses, stores,
and other buildings which is smaller than a town". This is largely the same as how this term will
be used in this thesis: a collection of buildings and structures, meant to invoke a feeling of people
living there. In videogames, an important aspect of villages is the purpose they serve for the
people playing the game. This can be an aesthetic purpose, or villages can serve to make a virtual
world feel more real or believable, there can be game mechanics linked to the location of the
village, or any of a number of other functions. In this thesis, the focus will be on the believability
aspect of videogame villages: how they make the world feel more believable.

1.2 Motivation

As videogame worlds become more and more expansive, more content needs to be built for these
worlds. Building this content by hand is a task that is work-intensive and expensive. Therefore,
being able to leave this task to a computer would make developing large videogames easier,
cheaper, and faster. Furthermore, there are videogames in which important aspects of gameplay
are based around interacting with content that changes each playthrough: rogue-likes, for example,
have the player replaying the same game over and over again, while shuffling their content, and
Minecraft’s world is randomly generated each time you start a new game. For these types of
games, making content that seems more like careful design has gone into it and less like the result
of a generating program, helps with immersion in the game and therefore with enjoyment of
the game. Building a procedural village generator that produces believable content, therefore,
will help with immersion while playing videogames, and will make building large open world
environments less labor intensive.

For this thesis, a simulation-based approach was chosen: more specifically, simulating the
village as an entity with needs. This was chosen because this approach has not been used before
for generating this type of content, and is therefore a novel approach to the problem. It is also a
quite promising idea: villages in the natural world also develop over time, with new buildings
built as the village develops a need for them. Because this approach seemed grounded in reality,
the hope is that it would help with believability. Another advantage of this simulation-based
method, is that the villages could change dynamically over time. Since the simulation does not
have a definite endpoint, this system could be used to believably change and expand the village
every time the player returns to it, thereby giving the idea of a world independent of the player,
and therefore increasing immersion.

It was chosen to develop this village generator for the game Minecraft specifically [4]. This
was done because of multiple reasons: since Minecraft has a large modding community and
has existed for a long time, many resources exist that allow for easy code-based changes to
the world. Because of this easy modification of the worlds, there is also much earlier research
done in Minecraft, specifically for PCG. There is even a contest for procedural village generation
in Minecraft, Generative Design in Minecraft (GDMC) [5]. Furthermore, because of the many

4

available modding tools, it would be relatively easy for others to use the code made for their own
purposes, and make improvements.

1.3 Problem Statement and Research Questions

In this thesis, the aim is to find a new solution to procedurally generating villages for videogames,
focusing on believability as a goal. The problem statement is the following: "How to develop a
procedural village generator that produces (more) believable villages for Minecraft-like games?"
To address the problem statement the following three research questions are formulated:

• What existing ways of procedurally generating villages for videogames are there?
• How to build a simulation-based village generator for Minecraft-like games?
• How to optimize the parameters for this village generator for believability?

These research questions were chosen because together they span most of the relevant in-
vestigation into procedurally generating villages for Minecraft-like games. The first research
question is concerned with earlier research. This is necessary to answer the problem statement
satisfyingly, since in order to be able to conceive of different solutions, one first has to know
what solutions were already tried. The second research question asks to build a simulation-based
generator. This contributes to the goal of building a believable generator, since it is believed that
a simulation-based generator would be more believable. The final research question is about
optimizing this built generator for believability, so its variables are not just set to random values,
but to values that optimize believability.

1.4 Thesis Outline

The outline of the thesis is discussed briefly. In Chapter 2, some relevant concepts in procedural
content generation are discussed: search-based techniques, mixed initiative, and how to evaluate
procedurally generated content. In this chapter earlier research on terrain generation, village
generation and need-based AI are also discussed. In Chapter 3 the Generative Design in Minecraft
competition will be explained, and some earlier submissions to this competition are shown.
Chapter 4 describes the methods used for this research. It is split into two sections: a part
about the algorithm of the simulation-based village generator, and a part about the search-based
approach that helps to tune the generator. After that, in Chapter 5, the experiments executed
to train the generator and to validate the trained generator are described, and the results are
given. In Chapter 6 the conclusion and discussion is given, and future work and improvements
are discussed in Chapter 7.

5

Chapter 2

Background and Related Works

In this chapter background information will be given, and some earlier related works will be
discussed. First, the concept of procedural content generation, as well as some subjects within this
field relevant for this thesis will be explained. After that, related work will be discussed, which
will focus on terrain generation, village generation, and simulation of needs.

2.1 Procedural Content Generation

As stated in the introduction, procedural content generation (PCG) for videogames defined as
generating content with little to no input from a human designer [1]. Here, three subjects within
the field of PCG will be described, based on what information is relevant to this thesis: search-
based PCG, the concept of mixed initiative in PCG, and how to evaluate procedurally generated
content.

2.1.1 Search-based Procedural Content Generation

The fundamental idea of search-based procedural content generation, is that there is some form of
algorithm that is searching for content with the desired properties by adjusting parameters. It is
exploring a search space filled with possible solutions, and trying to find the best or a satisfying
solution within this space. Often, evolutionary algorithms are used for these kinds of approaches,
but there are other options [6].

A search-based approach has three core components: the search algorithm, the content
representation, and one or more evaluation functions. As stated before, for the search algorithm
often an evolutionary algorithm is chosen. It uses randomness, combining the properties of
well-functioning individuals and picking the best individuals to increase the performance of the
population. The content representation is how the content is presented to the search algorithm in
a way that it can be easily changed and optimized. The evaluation function tries to measure the
quality that is being improved, whether that is fun, interest, believability, or something completely
different. It assigns some value to the content that has been generated that makes it possible
to rank the different results among each other, so the search algorithm is able to optimize for
well-performing content [6].

6

Evolutionary Algorithms

Evolutionary algorithms are one of the most used form of search-based algorithms [7] [8] [9]. They
are inspired by the concept of natural selection. The content representation of these evolutionary
algorithms is usually referred to as a gene, and the content this gene applies to is an individual. All
individuals together make up the population. Every time the algorithm is ran, this is referred to as
a generation, and every generation the entire population gets replaced by a new generation. There
are multiple ways of making the new generation. The first way is to replace the worst λ individuals
with copies of the others, and then mutate these λ individuals, to allow for randomness. This is
called the evolution strategy. Another type of the evolutionary algorithm is a genetic algorithm. In
this algorithm the genes of two individuals from the older generation can be combined into one
or two new individuals (mating these individuals). The new individuals are called the children,
and the individuals the genes came from are the parents. When genes are combined, this can
be done in a variety of ways. The most conventional one is a form of crossover. The genes are
then combined by taking the first part of one gene, and the second part of the other gene, as can
be seen in Figure 2.1. After crossover has occurred, there is usually some form of mutation that
can be done. There are multiple possibilities for this as well. The simplest form of mutation is
point mutation: one variable on the gene gets changed by a certain amount. Depending on the
form of the gene, mutations could be more complex; if the gene is presented in a graph form, a
mutation might switch a part of the graph out with a predetermined other partial graph. Often in
genetic algorithms, some form of elitism is applied. With elitism is meant that some of the best
individuals from the parent population get put directly into the child population. This practice
can make learning less likely to collapse, but it can also harm the variability of the population.

Figure 2.1: Visualization of crossover [10]

Since the evolutionary algorithm that is used in this thesis is a genetic algorithm, this type
of evolutionary algorithm will be focused on [11]. Algorithm 1 shows an example of a genetic
algorithm.

There are different ways to select the parents from the population. The one discussed here
is the tournament method, which is the parent selection method used in this thesis. It works
as follows: from the population, k individuals are selected (with or without replacement), and
the best (two) individuals from this group are selected to be parents. Depending on how large
k is, this can be more or less selective pressure: the larger k is, the more likely it is that the best
individual in the tournament is the best individual overall, while a k of 1 is the same as random
selection.

7

Algorithm 1: A Genetic Algorithm

initialize the population;
set generations to 0;
evaluate the population;
while generations < maxGenerations do

set childPopulation to emptyList;
if elitism then

add the best individual(s) of population to childPopulation
end
while size(childPopulation) < size(population) do

pick parent1 and parent2 from population;
mate parent1 and parent2 to get child;
if randomValue < mutationChance then

mutate child
end
add child to childPopulation;

end
set population to childPopulation;
evaluate the population;

end

2.1.2 Mixed Initiative

The term mixed initiative is used to describe a system where both human and computer creativity
is used to generate content. There are different ways in which this can be done: computer aided
design, in which the human designs most of the content with the computer as a tool to make
content creation easier, and interactive evolution, in which the computer creates the content, but
humans give feedback to the computer to make it fit their preferences [12].

Computer aided design comprises a range of possible solutions, from level editors that allow
human designers to place the entities of a level, to programs that take simple drawings and make
them into an entire 3D environment, to generators that take as input only a few settings. It is
used to make generating content faster and less expensive, while still allowing for (an amount of)
influence and creative control from the human designer.

Interactive evolution is when the fitness evaluation of an evolutionary algorithm is done by
having humans to judge the content. Many criteria that are deemed important when generating
content, such as fun, believability, immersion or challenge, are difficult for a computer to objectively
measure. They are almost by definition subjective criteria that are not easily measurable from
the raw data of the level, even if most people would agree on which levels are more fun than
others. Therefore, often these sorts of criteria are not evaluated by an automatic fitness function,
but are judged by humans, who are shown a piece of content and have to assign it a value. The
advantage of this approach is that it is more true to what is tried to be measured, but it also has its
disadvantages. Humans can get tired, and they judge more slowly than computers. It is therefore
quite expensive to get humans to serve as a fitness function. Furthermore, humans find it difficult
to judge experienced difference if there is not a large contrast in the content, and they display
more variability in how they judge. For these reasons, when an interactive evolutionary solution
is chosen, it is often mixed with more conventional fitness functions.

8

2.1.3 Evaluating Content

Being able to evaluate the results of a generator is important. Building a generator is easier than
building a good generator that generates the type of content the designer wants. Many of the
features generators are designed to build content for are subjective qualities, and therefore difficult
to measure. There are two main ways of evaluating a generator: the top-down approach, which
uses generator data to visualize the type of content the generator makes, and bottom-up evaluation
via players, which uses questionnaires to measure human subjective opinions about a game [13].

The top-down approach is concerned with the expressivity of the content created. Checking
the expressivity can make sure that the generator performs well in multiple circumstances, not
just in the few testcases that can be checked, and that the generator provides a wide enough range
of content. The principle is that a large amount of content is generated and evaluated, and that
the result of these evaluations is then visualized, with for example a heat map or a histogram.
What metrics the content is evaluated on deserves some attention: best practice is to make these
metrics be as far as possible from the input to the generator, since it would otherwise just measure
whether the generator is performing well, instead of whether it has the kind of expressive range
aimed for.

The bottom-up approach makes humans experience the content, and then asks them for their
opinion. This is usually done through surveys, especially ones that ask the people to rank several
options. Ranking is preferable over rating, since it gets rid of an amount of biases, and makes
it more likely that the different participants give similar answers [14]. Instead of surveys, other
types of information can also be extracted by human experience. Examining the play-style of
gamers, what levels they get stuck on and where, what they look at in a level, what aspects hold
their attention for the longest amount of time, can be quite informative depending on the quality
that is being measured.

2.2 Related work

In this section, earlier research that is similar to the work done for this thesis is described. First,
some interesting earlier approaches to terrain generation are shown. After that, earlier work in
village generation is discussed, and finally some examples of needs-based AI are shown.

2.2.1 Terrain Generation

Terrain generation refers to automatically generating terrain that can usually be rendered as a 3D
environment. This is related to using PCG for villages, and many of the village generators similar
to the one described in this thesis use some form of terrain generation. This technique is only
applied in this thesis in a very limited way: parts of the map are flattened.

In this section, multiple different examples of terrain generation are described. In [15], different
techniques for terrain generation using noise, simulated erosion, and simulated vegetation are
described. The methods are compared to each other, and described in terms of speed, memory
usage, and quality. An application of some of these techniques can be seen in [16].

A different approach to terrain generation is shown in [17]. Here, an evolutionary algorithm is
applied: using search-based techniques to find good terrain. Different mathematical and noise
functions are blended in such a way to achieve a satisfyingly mountainous terrain, with enough
accessible areas, and and enough edges in the terrain to maintain interest.

It is also possible to use agents in terrain generation, as Doran and Parberry [18] described.
They have multiple different types of agents walking around on a map, building different features

9

as they go along. Each different type of agent has a different set of rules: coastline agents, for
example, can create land by elevating land that is under sea-level, and the river agent moves
uphill from a coastline point to a mountain point until the mountain is reached, and then moves
downhill again to build its river. Another feature of this method is that it incorporates some
mixed-initiative techniques: a designer can set certain parameters for the different agents, and can
influence the world after it has been built.

2.2.2 Village Generation

Villages or cities can be generated on different levels of abstraction. Do you also generate entire
houses, or just a flat map with zoning designations? Or something in between? Different
approaches to village and/or city generation are described in this section.

A prevalent approach to generating cities seemed to be to make some large 2D map, such as
a city plan. Different approaches can be taken to this goal. In [19], different agents develop a
terrain map into a city map by following their own rules that are dependent on the type of agent
they are, similar to [18]. Vanegas et al. [20] take another approach: there the modeling of the
geography (where roads, parcels and buildings are) and the agents (who determine the amount of
jobs, population and land value) come together to make a 3D model of urban space.

Village generators that operate on a smaller scale are often less complex algorithms with
emergent features. Early city generators, such as [21] used L-systems (a type of PCG where a set
of rules can be used to generate tree-like shapes [1]). Different L-systems were used for building
the roads, and for the clusters of buildings that form the villages. Sometimes, some relatively
simple algorithms already gave good results: for example a village generator that was basically an
A* road network which added buildings to the sides of the road [22]. A more recent algorithm
uses cellular automata to generate cities [23].

2.2.3 Simulation of Needs

In this section, earlier examples of need simulations of an individual or entity will be described,
since simulating an entity is a relevant idea for this thesis. First, the main inspiration for the
simulation method, the need-based AI as seen in the videogame "the Sims" will be discussed. After
that, some applications of these need-based systems on human behavior modeling are shown.

In [24] the concept of needs-based AI is explained. It describes how the AI of individual sims
in the game The Sims works, and how that seems to give sims agency and makes them behave
in believable ways. The basic principle is that there is an action queue, with actions the sim is
planning to take. Every sim has needs, and each needs depletes in a different way. The objects
around the sim advertise satisfaction of needs to it, and different objects satisfy different needs in
different amounts. Before putting an action on its queue, all available nearby options for satisfying
needs are examined, and one of the three options that satisfy the sim’s need the best is randomly
chosen. This system is inexpensive, and provides behavior that is believable, in a sense. This
algorithm has been used in multiple iterations of the Sims games, and in other simulation games
[24].

Related to the concept of needs-based AI, is utility-based AI [25]. This design pattern for AI
comes down to making a list of options, evaluating those options, and choosing one of these
options to execute. Needs-based AI could be considered a more specific implementation of this
design pattern, since the same principle is followed, but the evaluation method specifically has to
do with the needs of the agent.

Aside from video-game AI, the needs-based concept has been used in models to explain
human behavior. In [26], a need-based system is shown that is used in order to predict activities

10

people will take, and through that predict travel. Nijland et al. [27] expand on this concept by
implementing activities that satisfy multiple different needs at the same time.

11

Chapter 3

Generative Design in Minecraft
(GDMC)

This chapter discusses the Generative Design in Minecraft competition (GDMC). First, the contest,
its submission methods and criteria are described, with special attention to the Chronicle Challenge,
as well as to the changes made to the contest in 2021. After that, some notable earlier submissions
will be discussed.

3.1 Competition

The GDMC competition was first held in 2018. The goal of the competition was to advance PCG
research in two particular ways: adaptivity to content, and holistic PCG [5]. Adaptive PCG was
defined as content generation that would adapt to content that had already been generated. More
specifically to Minecraft: GDMC was meant to stimulate generators that left the already existing
world mostly intact, and that changed the generation results to fit with the environment, instead of
the other way around. An algorithm that can generate a village on a completely flat map without
any features is less interesting than an algorithm that can adapt to what interesting features there
are on the map, such as mountains, rivers, or even earlier built structures. With holistic PCG is
meant that the different aspects of the generator fit well together. It is meant to stimulate villages
in which all aspects of the generator are meant to support the final result. This is done by grading
the village as a whole, and not grading individual aspects. There are no grading criteria for
small-scale content, such as the aesthetic value of the buildings specifically, but rather the aesthetic
value of the village is graded in totality, for example.

Since 2018, the competition has been held four times, once per year. In the first year, only four
generators were submitted [28]. Every year the number of submissions has increased, with this
year’s (2021) submissions numbering 20. The competition has developed over the years, adding
new criteria, submission methods, and optional challenges.

3.1.1 Grading Criteria

Village generators submitted to the GDMC are judged based on four aspects. These aspects are:

• Adaptability
• Functionality

12

• Believable and Evocative Narrative
• Visual Aesthetics

All generators are judged on these aspects by a panel of judges, who grade the generator on
how well it satisfies these criteria. Every generator is tested on a couple of different maps, with
different biomes and elevation levels.

Adaptability judges what it name indicates: it is concerned with whether the generator
produces villages that are adapted to the already existing map. This can be in terms of respecting
the "natural" terrain differences, building the buildings out of materials that exist in the area, or
even adjusting the shape of the buildings depending on what biome they are build in. It also
includes co-creativity: building a village around (and possibly even in a similar style as) structures
someone else has already built.

Functionality is concerned with what the person playing Minecraft might experience. The
question it asks comes down to: "Does this village function well in the game?" This includes
resources that the player might need, such as food and crafting stations, that every part of the
village is reachable by the player, and that the village is safe enough to rest there during the
night. This functionality criterium can also be considered from the view-point of the non-player
characters (NPCs), the villagers who "live" in the village. Does it seem like they have what they
need to survive in this village?

The next criterium, narrative, is concerned with a believable narrative. Can you imagine the
a story/culture/history for the generated village? Do different villages made with the same
generator serve different functions? This criterium is historically the one that the least attention
is paid to by the competitors [29]. Possibly, because actually building a village with a complex
history is more complicated than building a beautiful city that is well-adapted to its surroundings
and that functions well: the history affects all other aspects, and depending on what happened
in the village history the building types, materials used, layout of the city, etc. can be affected
throughout the entire village.

Visual aesthetics is concerned with whether the city looks good. While of course taste is
different for everyone, there are definite differences between villages that are more and less
good-looking. Interesting architecture that is more than just a square house will be judged more
favorably. Another aspect of visual aesthetics, is that there are no obvious artifacts of the generator,
since this would be considered to be ugly by most judges.

3.1.2 Chronicle Challenge

The Chronicle Challenge was introduced in 2020. The challenge is to provide a chronicle some-
where in the village that explains the history of the city, in order to give the village more of a
narrative [29]. This can be done after the village is generated, by some model that makes up a
narrative to explain the features that result from the generator, or it can be taken into account
during the generation process and use some of the same logic to explain the village. It can also be
a complex computer generated story, treated as a natural language problem, or it can be solely
preconstructed sentences where words are replaced depending on the village that was generated.

3.1.3 Changes in 2021

There were some changes and additions made to the competition in 2021. Two new non-optional
challenges were added: a 1000 by 1000 map (around 16 times larger than the normal map of 256
by 256), and co-creativity. For the 1000 by 1000 map, the challenge was to find the best place
within this very large map to actually develop the settlement. Then, there would have to be some

13

form of guidance towards the judges from the center of the map to the village (in the form of a
road, an arrow, or a signpost, for example). The challenge with co-creativity was to incorporate
already built structures into the generated village in some form: from building around them and
leaving them intact, to copying the style of the earlier built buildings. The final change in 2021
was that instead of all maps having the same set size of 256 by 256, the size of the maps on both
the x and z direction would range between 200 and 300. This meant that any generator developed
would have to be able to deal with differently sized maps.

3.2 Earlier Submissions

In this section, some earlier submissions to GDMC will be shown. Interesting submissions each
year will be discussed, with the most attention being given to submissions with more extensive
explanations provided and innovative approaches.

(a) Submission in 2018 (b) Submission in 2019

Figure 3.1: Examples of the results of Filip Skwarski’s submissions in 2018 and 2019

In 2018, the first year that GDMC was held, Filip Skwarski won the competition. His approach
used a scoring system to evaluate possible locations for a new structure, and then place one of
two types of structures on that location. He only used two types of buildings: plazas and farms.
He generated roads with an A∗ algorithm. The resulting villages have clusters of structures close
together. The next year, in 2019, Skwarski improved on his earlier submission by adding more
different buildings, and by having his already existing buildings "suggest" what buildings should
come next to them. With this new and improved algorithm, he won the competition again. Images
of the results of these two generators can be seen in Figure 3.1 [30].

The second place in 2019 went to Julos14 (Figure 3.2), a team of bachelor students from
Denmark. Their approach was different: instead of picking building locations first, and letting the
layout of the entire village emerge, this team decided to divide the map into sections separated by

14

Figure 3.2: Examples of the result of Julos14 [31]

hills or water, and build a network of roads within each section, after which building locations get
assigned [31]. The fact that this team got second place with an opposite approach from Skwarski
shows that no optimal approach to this problem had been established.

Figure 3.3: Examples of the result of the World Foundry [32]

In the 2020 competition, a number of interesting generators were submitted. Three are
highlighted; The World Foundry, ICE_JIT, and the University of Tsukuba. The World Foundry
used a simulation based approach. Autonomous agents walked around on the map, and placed
buildings with the materials at that spot, using their own style. When two agents came together,
they had a chance to create a child that inherits style aspects from both parents. What kinds of
buildings were placed depended on features in the landscape. This generator was the first to take
on the Chronicle challenge: every agent keeps a log of their actions, which is then placed in the
world as a chronicle [32]. The method the World Foundry used for placing the chronicle in the
world has been adapted in the generator made for this thesis.

ICE_JIT based its style on Japanese buildings. Their villages have different types of Japanese
styles in different biomes, with mountainous biomes having more pagodas and shrines, dessert

15

Figure 3.4: Examples of the result of ICE_JIT [33]

biomes having Japanese townscapes, and regular terrain being more reminiscent of Kyoto. The
generator generates a main street, with smaller side streets branching off it, on which houses and
shops are placed [33]. The results of this generator can be seen in Figure 3.4.

The final generator to be discussed here is the Traincity generator, by the University of Tsukuba,
which is shown in Figure 3.5. It is based on an earlier submission, by ehauckdo in 2019. This
submission focused on dividing the map into a city center, and the outskirts of the village. In the
city center, apartment buildings were placed, while in the outskirts smaller houses are build. The
addition made by the University of Tsukuba is that there is a train-network, that allows villagers
to be transported from one side of the city to another [30]. The different structure generators from
the University of Tsukuba were used in this research to generate almost all structures seen in the
generator.

16

Figure 3.5: Examples of the result of Traincity

17

Chapter 4

Building the Generator and
Optimization

In this chapter, the methods to build the village generator are discussed. First, the general set-up
of the simulation-based village generator is discussed, then the optimization of the parameters of
this generator is described.

4.1 Simulation-based village generation

In this section, the process of creating the simulation-based village generator is discussed. First,
the framework that was used (MCEdit) will be explained briefly. After that, the algorithm that was
developed is explained in depth, with a particular focus on the initial location finding algorithm,
the needs calculation, and the location and costs.

4.1.1 MCEdit

MCEdit is a "saved game editor" for Minecraft. Because of the way that Minecraft save files
include the entire generated world, this means that it is similar to a world-editor program. It is
not affiliated with any of the official distributors of Minecraft, such as Minecraft, Mojang AB, or
Microsoft Inc., and is an open-source project [34]. MCEdit provides certain utilities that make it
a very convenient method of changing the Minecraft maps in any way that is desired. For the
purposes of this research, the filter function is especially useful. It allows for easy editing of large
chunks of the map through scripts written in Python, which makes writing a PCG algorithm for
Minecraft much easier. The version of MCEdit that GDMC provides also comes with an amount
of functions and methods that provide utility for generating villages specifically.

4.1.2 Simulation algorithm

The main concept of this approach to generating Minecraft villages is to simulate the entire village
as an entity with needs and wants. The village can then fulfill its needs through building different
houses that satisfy different needs in different ways. It is based on the needs-based AI system that
is used in the Sims [24]. Every action that can be taken is weighed for satisfying the sim’s needs
the best, and one of the top three actions is chosen. Inspired by this approach the algorithm for
this village builder was made. It is shown in Algorithm 2.

18

Algorithm 2: The need-based villagebuilding algorithm

1 find the best starting spot;
2 build the first building there;
3 set ticks to 0;
4 while ticks < maxTicks do
5 update needs;
6 for buildingType in allBuildingTypes do
7 set costs to ∞;
8 for buildingLocation in allPossibleBuildingLocations do
9 if cost for buildingLocation < costs then

10 set costs to cost for buildingLocation;
end

end
11 calculate need improvement for buildingType;
12 calculate score using costs and need improvement ;

end
13 determine best score;
14 if best score > 0 then
15 build best building

end
end

In this section, multiple parts of this algorithm are discussed in turn. First, the different input
variables to the generator is shown. After that, the initial location selection procedure is discussed.
Then, the needs calculation is explained. After that, the location selection and cost calculation is
discussed, and finally some small additional features of the generator are explained.

Input parameters

There are a number of input parameters to the generator that have to be discussed first. Some are
explained in this section, others fit better in another section, and are explained there.

• The first input variable to be discussed here is the max number of buildings. If this is set to
zero, there is no maximum, but if it is set to a value larger than zero, the generator will stop
generating buildings after that maximum is reached.

• Simulation ticks is the amount of ticks the generator is allowed to run for.
• Bridges is a boolean that determines whether the bridge building algorithm should be turned

on. The bridge building algorithm does not function well, and therefore this boolean is off
by default.

• Clear trees determines whether the generator clears the trees in every new area that is added
to the area where it can search for new building locations. This is by default set to false,
because it is quite expensive to check every square of the new area for trees. Especially
when training these generators, the costs need to be kept as low as possible to finish in a
reasonable time.

• Co-creativity avoids building on top of earlier built structures, but has not been tested
intensely, and is expensive since every square in the new area has to be checked for pre-built
blocks.

19

Parameter name Type Range Standard Value Explained
Max number buildings int [0, ->) 0 here
Simulation ticks int [0, 50] 30 here

Search area int [16, 30] 20
Initial Location
Selection

Water float [0.0, 1.0] 0.7
Initial Location
Selection

Lava float [0.0, 1.0] 0.2
Initial Location
Selection

Cliffs float [0.0, 1.0] 0.1
Initial Location
Selection

Scoot Boolean True, False True
Initial Location
Selection

Bridges Boolean True, False False here
City wall Boolean True, False True Smaller Aspects
Chronicle Boolean True, False False Smaller Aspects
Clear trees Boolean True, False False here
Co-creativity Boolean True, False False here
EA version Boolean True, False False here
Load genes Boolean True, False False here

Version String
Random, Spread, Needs,
Historical, Balanced

Random here

Table 4.1: Input parameters

• EA version turns certain expensive parts of the code that are not necessary for learning off,
such as finding the initial location.

• Load genes allows the algorithm to load the variables that were determined by the evolu-
tionary algorithm for different fitness functions, and version determines which genes will be
loaded, and whether location or needs-based calculations will be made, depending on the
version chosen.

Initial Location Selection

The concept behind the way in which the initial location was selected, was based on where a first
settler would be likely to build their first building. Most villages are built close to water, so water
was one of the things this algorithm would be searching for. Other aspects that would be searched
for would be cliffs, because settling near a cliff would provide security, and lava, because it would
be convenient for players to have a village near lava.

In order to find this first spot, the entire map was divided into sections of 16 by 16 squares.
The outer-most squares were not considered to place the first building into. For each square, it
was checked whether it only existed of valid ground blocks (blocks that are not water or lava). If
it did, it was added to the pool of possible squares to place the first building on. After that, every
square was checked to see whether it had one or more neighbors that were a square containing a
large amount of water, lava or a cliff. If the square did have neighbors containing these features, it
was added to the respective list of squares neighboring one of those features. One of these squares
would get selected, biased by user input and by centrality in the map. If "scoot" is turned on,
then a slightly wider square gets considered, and within that square the flattest area that fits the

20

starting structure that is closest to the features will be selected. This procedure corresponds with
line 1 (and 2) of Algorithm 2.

Needs Calculation

After every tick, the needs of the city get updated. This corresponds to line 5 in Algorithm 2.
There are five different needs in total: food, housing, jobs, resources, and social. These needs were
chosen because they fit well with the structures from earlier work that were used in the generator,
and because they seemed to be some of the factors that would be important for a developing city.
However, many other needs could have been included, such as security, or transportation. For
more on this, see Chapter 7.

For the first 15 ticks, only the food and housing needs came into play, after that all needs were
active. Every tick, the population increased, either by a growth factor (used during training to
decrease unnecessary variability) or with a certain chance to add one individual. After that, every
relevant need was updated by subtracting the population minus the amount of satisfaction of that
need already in the village, bounded between 0 and 100.

Need = min(100, max(0, (OldNeed − (population − satis f action)))

The satisfaction for each need is depended on the buildings that are already placed. Every type
of building satisfies one or more needs, and the amount by which the satisfaction increases for
that building is determined by the genetic algorithm. So, for example: if a house satisfies housing
by 3, and there are 2 houses already built, then the satisfaction for houses is 6 (3 × 2 = 6). If the
population then is 7, and the old value of the need is 46, the new value will be 45: 46− (7− 6) = 45.

Location and Costs

To select the next location for a structure to be built, an area containing the entire village up
to that point, plus a strip of land around the borders of the size of the variable "search area"
is investigated to find possible new locations for a structure. Every spot that was not already
occupied or contained water is considered, and for each different building type seven possible
building spots were selected (the number of building locations investigated was limited to seven,
because that seemed to provide a good balance between relatively quick finishing, and a satisfying
structure location). The spot with the lowest cost, as determined by the unevenness of the location,
is selected to be the building location for that type of building. This corresponds to lines 7 to 10 in
Algorithm 2. The different building types, their sizes and the needs they satisfy can be seen in
Table 4.2. Many of the buildings are aesthetically only a variant of the "house" building, with a
different usable object inside. Whether this is the case for any of these building types will also be
shown in Table 4.2.

Selecting the Next Building

After the locations for the next buildings as well as the costs for these locations were determined,
every building type is tested for how well it would satisfy the needs of the village (line 11 in
Algorithm 2). Whenever a building is build, the need(s) it satisfies is given a bonus, the size of
which can be set. Depending on how much the needs change, the action of building that structure
is given a score. The formula for this score was taken from "Needs-based AI" [24], and it looks as
follows:

21

Building name Minimum size Random range Needs satisfied House-like
House 14 6 Housing n.a.
Farm 14 6 Food no
Fountain 18 0 Social no
Pasture 12 8 Food, Resources no
Cleric 14 6 Jobs, Resources yes
Crafter 14 6 Jobs, Resources yes
Smith 14 6 Jobs, Resources yes
Enchanter 14 6 Jobs, Resources yes
Blacksmith 14 6 Jobs, Resources yes

Table 4.2: Different building types

score = ∑
allNeeds

(Aneed(currentValueneed)− (Aneed(f utureValueneed))

with Aneed being an attenuation function, in this case 10/need. By using this function, fulfilling
needs that are almost depleted becomes much more important than needs that are still almost
fully satisfied.

This need fulfillment score is then balanced with the costs of building that structure at that
location, resulting in a total score. The building type that has the best total score will be built, and
its bonus will be applied to the needs (lines 12 to 15 in Algorithm 2).

Minor Additions

Some other small additions were made to the generator. The ones that will be discussed here are
the chronicle system and the village wall generator.

Since this approach to village generation seemed well-suited to the chronicle challenge, a
simple way of solving that challenge was implemented. Any structure that in the fiction of the
village the villagers built got a string assigned explained what was done, and why this was done.
The first building location, for example, would be specified as "The tower stands at the place our
first settler started the city. This spot was chosen because it was close to water." and building
a house would be described as "We build a house because it was good for housing." After the
generator was done, the chronicle was converted into a book, and placed into a chest in the tower.

After a certain number of ticks, there is a chance for a village wall to be built. The main
purpose of this wall was to make it seem like the village took security into account, and to show
how the village had developed over time. After the wall was built, new buildings would still be
added, and just like with medieval European cities, some newer buildings would have to be built
outside of the village wall. Determining where the wall would come was relatively easy: it would
be built just outside of the borders of the village at that tick.

4.2 Search-based Approach

In this section, the way in which the parameters of the simulation-based village generation
algorithm are optimized is described. During the first iteration of this algorithm, the values for
the amount of satisfaction a existing structure gives to a need, the bonus given to the agent for
building any particular structure, and the search range were all set to certain values. These values

22

Gene type Min Max Change
Satisfaction per building of this type 0 10 5

Bonus per building of this type 0 100 50
Search area 10 40 15

Table 4.3: Minimum and maximum value, and the amount by which the gene maximally changes per mutation for
different types of genes

made intuitive sense, but were not tested at that point. With the evolutionary algorithm these
variables are optimized to provide a result specified by a fitness function, which should provide
better results.

In order to optimize the different variables for the best village-generation, an evolutionary
algorithm (EA) was used. This method was chosen, because there were many independent
variables that would influence the outcome, and therefore a more conventional hill-climbing
algorithm would not have been a good fit.

In this section, first the content representation used for the evolutionary algorithm will be
described. After that, the way in which selection is performed is discussed. The last and largest
part of this section is an explanation of the different evaluation functions that were used for this
research.

4.2.1 Content Representation

Figure 4.1: Visualization of a gene

Each individual has 31 genes. Of these, the first 15 code for the long-term need-satisfaction of
the different types of buildings, the next 15 code for the short-term the bonus to the need for a
built structure, and the last one codes for the distance at which new buildings can be placed (the
search area). When the genes mutate, they can change a certain amount per mutation, and all
positions are bounded. For more specific info, see Table 4.3.

4.2.2 Selection

In order to generate the children, first elitism is applied: the best individual is added to the child
population, and the worst individual of the old generation is discarded. Then, parents are selected
using tournament selection. Every pair of parents produces one child through crossover. This
crossover takes into account that positions 15 away on the gene count for the same information, so
these are passed on together (for an visualization, see Figure 4.2. The red square stands for the
position at which crossover occurs). After that, there is a chance for the child to mutate.

4.2.3 Evaluation Functions

The purpose of this evolutionary algorithm, is to optimize the believability of the generated villages.
While there is no efficient way to directly optimize for believability, some approximation could be

23

Figure 4.2: Visualization of crossover

done by taking inspiration from how this generator functions: simulating village development in
the real world. Therefore, that is what the fitness function is optimizing for: criteria from literature
on village development that are similar to how real villages historically developed. Based on this
research, four different fitness functions (and a random generator) were developed. In order to
test each fitness function, after evolving a village had to be generated for each individual in the
population. After a village was generated, the list of buildings and the surface area of the village
were returned, and a fitness was assigned based on these factors.

Historical fitness function

The first approach was to base the entire fitness function on historical villages, more specifically,
medieval villages from around the 13th century. This function, and the villages generated using
this fitness function will be referred to as "Historical". This period in history was chosen because
the technology of that time seemed most equivalent to the simple tools used by someone starting
a game in Minecraft. Basing the fitness function on historical data meant that the rates of the
different buildings as compared to the population were based on research. During the 13th century,
there was one acre of land necessary to sustain one person, and every third field was left fallow
[35]. Therefore, one acre of farmland (or 14 fields) should be available per one population, and 7
pastures. The average family in these primitive villages would have had around five members:
two parents, and three children [36]. Therefore, the fitness function was set to one house per 5
population. Roughly one in four working people was some form of craftsman [37], and since there
were 2 working people per house, and five people per house, there would be one craftsbuilding
per 10 population. The final factor that went into this fitness function, was the spread of the
buildings. Medieval villages were built quite close together: 20 to 30 houses per acre. Therefore,
the fitness functioned valued that amount of buildings per acre.

Game-based believable fitness function

While the historically based fitness function does have history to argue for its believability, there
is reason to assume that this fitness function will not be perceived as believable when someone
would be playing Minecraft. The reasons for this are that the number of fields necessary for one
population would far outweigh any other landuse, and that players would assume every village to
have more than just one or two types of crafters. Therefore, another fitness function was made: one

24

that took the Minecraft game dynamics into account while basing fitness assessment on historical
data. The most important thing that changed was the number of fields: instead of 14 fields per
person (which is what one acre of farmland per person would come out to), it was changed to
be one field per 5 population. This was done, because it can be reasoned with game-mechanics
that one field is enough to sustain 5 people within Minecraft’s systems.1 The pastures were still
considered as half the number of fields. The amount of population per house was changed from 5
to 3: normally, only one villager would sleep in a place with a bed, but with the houses being as
big as they are, it seemed like multiple people per house would be more believable. Since there
were fewer fields and pastures, it seemed like more crafter-type buildings could be placed. One
type of crafter per 4 population seemed like a good number. Since it seemed like more than one
fountain would be bad for believability, the fitness function was made to prefer only one fountain.
Finally, the spread was reconsidered. Since it seemed like around 5 was around the maximum
amount of structures that could be placed in one acre, this was set as the preferred spread for this
fitness function. This fitness function and its related villages will be referred to as "Balanced".

Structures-only, spread-only, and random

In order to effectively test whether the fitness functions could improve believablity, other cases
were explored. From the game-based believable fitness function, two aspects were split off to be
explored on their own: the structures-based aspect, and the spread-based aspect. The structures-
based aspect took all the calculations in the fitness function that had to do with the structures
that were being build in relationship to the population amount, and only based the fitness on that
aspect. The placement of these structures on the map was done randomly. This will be called
"Need-based". The spread-only fitness function determined the type of building that would be
placed next randomly, but tried to make it fit the spread-aspect of the game-based fitness function.
This is referred to as "Spread-based". These two fitness functions were build to be able to compare
the Balanced fitness function to, to see whether the complete fitness function would be better than
the individual aspects of this fitness function. The final generator that was build was the random
village-generator: it would place random buildings on random spots. (Referred to as "Random".)
This was the most extreme comparison case.

1One square of farmland produces one wheat every two days. Three wheat are necessary for making one bread, and
three bread are enough for filling the entire hunger bar (which will be considered to be the hunger one would get from
not eating an entire day). Therefore, every villager needs 18 squares of field, to sustain them. A farm has on average 88
squares of field. 88/18 ≈ 5 people fed from one field

25

Chapter 5

Experiments and Results

In this section, two experiments are described. First, the training of the evolutionary algorithm,
and the parameters that were set are described in Section 5.1. The results of the experimentation
with these parameters are discussed. After that, the results of the trained village generators are
judged by humans on perceived believability through a survey. This is shown in Section 5.2. How
the survey was set up, as well as the results of this survey is also discussed.

5.1 Training the EA

In this section, the way the evolutionary algorithm was trained is described. First, the parameters
of the evolutionary algorithm are discussed, then the training process is described, and after that
the results of the training will be shown and explained.

5.1.1 Parameters

The evolutionary algorithm was set up with a population size of 15. This seemed to provide a
good balance between enough variability, and training that was not too expensive in terms of
clock-time. The number of generations was set to 100, since the fitness seemed to have leveled
off at that point looking at the produced graphs. The outcome variable that is referred to as
fitness through-out this thesis could maybe better be described as inverse fitness: a lower fitness is
better in this thesis. Three different approaches for setting the value of the mutation rate were
considered: a flat mutation rate of 50%, a flat mutation rate of 20%, and a mutation rate that
started high at 50%, but decreased by 2% every 5 generations, ending in a mutation rate of 10%
after all generations. This last approach to the mutation rate seemed to provide good results in
literature [11]. All of these mutation rates were tested for the game-play based fitness function,
since this was considered the most important and promising fitness function. The decreasing
mutation rate made for the most stable mutation graph, so this mutation rate strategy was chosen
for the further experiments. The graphs based on which this decision was made can be seen in
figure 5.1. In this figure, as well as all following figures showing fitness graphs, the upper graphs
show the fitness, with the best individual in orange and the average of the population in blue. The
lower graph shows the variability. To reiterate: for this thesis, a lower fitness is better. Figure 5.1a
shows a more irregular curve of the fitness, while the variance in figure 5.1b drops off very quickly.
Figure 5.1c however, shows a more gradual decrease in the variability, and a gradual improvement
of the fitness. Therefore, the decreasing mutation rate was used in all further training with the

26

(a) Mutation rate of 50% (b) Mutation rate of 20%

(c) Mutation rate decreasing from 50% to 10% over the generations

Figure 5.1: Average fitness (blue), best fitness (orange) and variance for different mutation rates

different fitness functions.

5.1.2 Training process

The evolution of the generators with the different fitness functions was done on a personal laptop.
The laptop had a Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz processor, and 16 GB RAM. The
duration of the training process differed for the different fitness functions: of the two aspects that
were investigated, the spread and appropriate placement aspect was the most expensive, the need-
simulation was less expensive. The Needs training took about 4 minutes per 5 generations, and
the Spread, Historical and Balanced training took about 2 hours and 15 minutes per 5 generations.

27

(a) Fitness function only based on spread (b) Fitness function only based on needs

(c) Historical fitness function (d) Balanced fitness function

Figure 5.2: Average fitness (blue), best fitness (orange) and variance for different fitness functions

28

5.1.3 Results

This section is split by types of results: first the quantitative results are discussed, including the
shape of the fitness curves, then the qualitative results are shown, such as how the results of the
different generators look.

Quantitative results

Figure 5.2 shows the graphs of the development of the variance and fitness using the different
fitness functions. It can be deduced from these graphs that not all of these fitness functions were
well-suited to this evolutionary algorithm set-up. Figure 5.2a, for example, shows a relatively
stable fitness curve for the best individual, while the average lags behind. Spread is mostly
determined by a single gene off the 31 gene long genome (the last gene, determining the search
distance), so it is likely that through randomness the optimal value of this gene was reached
quickly. Figure 5.2c also shows an interesting finding: the value fitness here is orders of magnitude
larger than that of the other fitness functions. This is mainly because the demands made of the
fitness function are not quite achievable for the generator: the amount of houses and fields and
pastures, combined with the amount of structures asked for per square meter are not physically
possible for this generator to achieve. Despite that, the fitness does seem to slowly improve over
the generations.

Qualitative results

After training, the genes produced by the evolutionary algorithm were used to set the variables of
the different generators, and villages were made using these generators. Some images of these
villages in the dessert biome are shown here in bird’s-eye view 5.3. For clarity of these images, the
different house-like building have been given colored roofs. As was expected, both the Random
and Needs generators occupied a larger area than the other generators, since they put buildings
down in the entire box, instead of searching for appropriate places close to already build buildings
(see figures 5.3a and 5.3c). Both Spread and Random had more different kinds of buildings, as
can be seen from the variety of colored roofs. Since all buildings had the same chance of being
selected, there were also more different buildings being built (see figures 5.3a and 5.3b). Historical
seems to have a particular preference for pastures, which are the rectangular fenced in areas 5.3d.
This is explicable by the fact that the fitness function of this village demands more pastures and
farms than is possible, but it demands less pastures than fields, so it is easier for the generator to
satisfy this criterium. The Balanced village does seem to combine the properties of the Spread-
and Need-based villages: it has a similar variation in buildings as Need-based, but on an area and
spread out in a similar way to Spread-based (figure 5.3e).

While the different villages look significantly different in bird’s-eye view, these differences are
not obvious when walking through the villages, as if playing Minecraft. Figure 5.4 shows images
of how villages built in the same biome look like when exploring them on foot. While Historical
(figure 5.4d) stands out with the amount of pastures, and Needs and Random (figures 5.4c and
5.4a) are more spread out than the other villages, the differences are subtle. This could pose a
problem.

5.2 Validating Believability

In this section, the survey made to compare the villages resulting from the different fitness
functions will be discussed. First, the setup of the survey itself will be explained. After that, the

29

(a) Random village (b) Spread-based village

(c) Needs-based village

(d) Historical village (e) Balanced village

Figure 5.3: Bird’s-eye views of the villages resulting from the different fitness functions

30

(a) Random village (b) Spread-based village

(c) Needs-based village

(d) Historical village (e) Balanced village

Figure 5.4: Player view of the villages resulting from the different fitness functions

31

results of the survey, as well as a discussion of these results, will be shown.

5.2.1 Survey

On three different maps with different biomes, the different villages were generated by setting
the variables to the genes of the best performing individual of the final generation with a specific
fitness function. For each of these 15 villages, a short clip was made, using cheats to be flying in
Minecraft to show an overview of the village. For each map, these 5 clips were combined into one
YouTube video of about 3 minutes, that would show the 5 different villages that were the result of
the 5 different fitness functions. The three biomes that were chosen were: a dessert, which is a
very flat biome, a forest/mountainous biome with water, and the very uneven mesa biome, which
has large plateaus with canyons between them. Impressions of these biomes can be seen in figure
5.5.

In the survey, every participant was first asked some demographic questions, as well as
questions about their experience with games in general and Minecraft in particular. After that,
they were shown the first video and asked to rank the five villages on the aspects of fun, immersion,
and realism. These specific aspects were asked about because they are related to believability, but
were considered to be easier for people to form an opinion about. Immersion and experienced
realism are two important aspects of believablity, and perceived fun is what is expected to follow
from believability, as well as an important aspect of creating content for games in general. The
order in which the villages were shown was random, and the villages were just named "A" up to
"E". At the end of the survey, there was a chance for the participants to leave comments on the
survey. The survey was shared to DKE students, participants of GDMC through the discord, and
to some personal friends of the researcher.

5.2.2 Results

In total, 51 responses were received, of which 31 decided to complete the entire survey, not only
the first village. Of these, 44 individuals were male, 5 were female, and the other 2 responses
identified as non-binary or would prefer not to say. Most of the responses were by people in their
late teens or twenties, with a few outliers on either side. More than half of participants played
videogames at least multiple times a week, and more than three quarters played videogames
at least multiple times a month. None of the participants had never played videogames. The
overwhelming majority had some familiarity with the game Minecraft: 66.7% had played it for
more than 100 hours, and 25.5% had played for between 10 and 100 hours.

After the results were received, some data treatment was done. More specifically: the rankings
for the three different questions were translated into scores, with a score of 5 on a questions for
one of the five village types being the best, and 1 being the worst. These scores were added up
per individual for all three questions, and averaged. The results of this are shown in Table 5.1. For
all following analyses, the value of α was 0.05.

Comparing Questions

After the averages were calculated, the effects of the three different questions were investigated
individualy. First, ANOVAs were done for all these questions, on all these maps. The p-values of
these ANOVAs can be seen in Table 5.2.

As can be seen in Figure 5.2 all different questions were significant on the desert map, while
only the realism question was significant in the other maps. The the difference between the
Balanced and Random types of villages was the most relevant to this research, so a t-test was

32

(a) Desert biome

(b) Forest/mountain biome

(c) Mesa biome

Figure 5.5: Impressions of the three different biomes

performed to see whether the difference between Balanced and Random was significant for any
of the significant questions. The results are shown in Table 5.3. For all of these, the difference
between Balanced and Random was significantly different. A Pearson correlation test was also run
to compare values of the different questions to each other. This was only done on the desert village
(village 1). The results can be seen in Table 5.4. All of these questions were significantly correlated
for this map, which does indicate that fun, immersion and realism do seem to go together for this
type of biome.

Total Score

As can be observed from Figure 5.1, the Balanced village type seemed to perform quite well in
both village 1 and 2 (the desert and mountainous/forest areas). Balanced has the highest score in
both of those villages. In village 3, Balanced did not perform as well: there it only has the second

33

Type Village 1 Village 2 Village 3

Balanced Total 12.039 10.452 9.710
Fun 4.216 3.323 2.903

Realism 3.824 3.581 3.548
Immersion 4.000 3.548 3.258

Historical Total 6.138 8.194 8.161
Fun 1.804 2.742 2.806

Realism 2.176 2.839 2.581
Immersion 2.157 2.613 2.774

Spread Total 9.275 9.806 8.258
Fun 2.961 3.226 2.774

Realism 3.216 3.516 2.774
Immersion 3.098 3.065 2.710

Needs Total 9.941 8 10.710
Fun 3.431 2.807 3.548

Realism 3.235 2.548 3.613
Immersion 3.275 2.645 3.548

Random Total 7.608 8.548 8.161
Fun 2.588 2.903 2.968

Realism 2.549 2.516 2.454
Immersion 2.471 3.129 2.710

Table 5.1: Average and Variance of Scores

Map Fun Realism Immersion Total
Village 1 (desert) 1.44 ×10−20 2.97 ×10−9 6.28 ×10−12 5.76 ×10−17

Village 2 (forest/mountains) 0.391 0.00189 0.0540 0.0306
Village 3 (mesa) 0.188 0.000868 0.0579 0.0117

Table 5.2: ANOVA p-values

highest score, after Needs. Historical did not perform well: it is always either worst or second
worst in terms of score. Spread seems to perform better in village 2, and Needs seems to perform
better in village 3. This could indicate that different parts of the Balanced generator are more
important in different biomes.

ANOVAs ANOVAs were performed to investigate whether there was statistically significant
difference between the different groups. The results of these ANOVAs can be seen in Table 5.2. All
ANOVAs indicated that there was a significant difference between the totals of the groups. The
difference seems to be the most certain for village 1: the figure shows a p-value of 5.76 × 10−17 for
this village, which is much lower than α. Both village 2 and 3 also showed statistical significance,
but here the p-values were higher (0.03 and 0.01, respectively).

T-tests Because it was shown that there was significant difference within all maps, the question
became which village types had the significant difference. In order to find that out, t-tests were
done. The results of t-tests in village 1 can be seen in Table 5.5. All of the differences between
the groups that were investigated were statistically significant. For village 1, it was decided to

34

Map Type P-value
Village 1 (desert) Fun 3.05 ×10−11

Village 1 (desert) Realism 3.68 ×10−6

Village 1 (desert) Immersion 1.16 ×10−8

Village 2 (forest/mountains) Realism 0.00557
Village 3 (mesa) Realism 0.00168

Table 5.3: P-values of two-tailed t-test of the difference between Balanced and Random

Measures Pearson correlation coefficient P-value
Fun and Realism 0.657 1.652 ×10−7

Fun and Immersion 0.757 1.315 ×10−10

Realism and Immersion 0.724 1.997 ×10−9

Table 5.4: Pearson correlation coeffient and p-values for the different measures in village 1

focus on the performance of Balanced, since this seemed to be the most promising village type. It
seems that Balanced is significantly better than all other village types for this particular map: the
two-tailed p-value is lower than α in all comparisons done. The Historical village type also was
significant, but in this case significantly worse than Random (which indicates that it is likely the
worst performing village, since Random has the second lowest average score (see Table 5.1)).

Type Type P-Value
Balanced Random 1.72 ×10−10

Balanced Spread 0.000259
Balanced Needs 0.00138
Historical Random 0.0137

Table 5.5: T-tests for village 1

For village 2, the averages seen in Table 5.1 seemed closer together, so it was less likely that
there would be significant difference between the different village types. It was the case that
Balanced was significantly better than Random, as can be seen in Table 5.6. Spread, which also
had a higher average score than Random, was not significantly different however, and Balanced
was not significantly different from Spread. Therefore, it is not possible to state that Balanced
performed best in this case, only that it performed better than the Random generator.

Village 3, the mesa biome, did not show a significant difference between Balanced and Random
(table 5.7). Needs however was significantly better than Random, which is interesting, since
the Needs generator generated houses that would only depend on the needs of the city, not on
spread. This seems to indicate that for the mesa biome, the need-based AI matters more than
the placement AI. It is also possible that the close-together villages that the Balanced evaluation
function prefers are not very well-suited for making believable villages in this particular biome.

35

Type Type P-Value
Balanced Random 0.0473
Spread Random 0.193
Balanced Spread 0.446

Table 5.6: T-tests for village 2

Type Type P-Value
Balanced Random 0.0824
Needs Random 0.00583

Table 5.7: T-tests for village 3

36

Chapter 6

Conclusion and Discussion

To reiterate, the problem statement for this thesis is the following: "How to develop a procedural
village generator that produces (more) believable villages for Minecraft-like games?" The research
questions to this problem statement are:

• What existing ways of procedurally generating villages for videogames are there?
• How to build a simulation-based village generator for Minecraft-like games?
• How to optimize the parameters for this village generator for believability?

What existing ways of procedurally generating villages for videogames are there? In Chapter 2
answers were given to the first research question. The main subjects discussed in that chapter were
those which were relevant for this research: search-based PCG, mixed initiative, and evaluating
PCG content, as well as short descriptions of earlier work on subjects relevant to this thesis. Earlier
research specifically for generating villages in Minecraft was also shown in Chapter 3, where
multiple earlier submissions to GDMC were discussed.

How to build a simulation-based village generator for Minecraft-like games? The second
subquestion was how the generator would be built. The generator was inspired by the needs-based
AI from the Sims, with separate algorithms for determining the placement of new buildings. This
seemed to provide satisfying results, but there were some parameters to tune. That is where the
third subquestion came in.

How to optimize the parameters for this village generator for believability? The parameters
were tuned through an evolutionary algorithm. On the results of this algorithm, a survey was
performed. The results of the survey indicated that the tuned algorithm was in most cases better
performing than random placement, and that in certain biomes this performed better than all
other approaches. However, it also seemed to indicate that for other biomes, the factors that were
selected for through the evolutionary algorithm might not achieve believability.

Some points of discussion could be brought up about this thesis. While it was argued that fun,
immersion and realism are related to believability, it is possible that there are other important
facets of believability that were not investigated. This would mean that the survey done does
not completely reflect believability. Most of the problem comes from the fact that this concept is
difficult to quantify, and is therefore a difficult quality to measure. However, the questions used
did come close enough to measuring believability to be informative. Another problem with the

37

design of the study, is that the differences in the different village types were not always clear for
all participants, and that the participants sometimes had difficulty remembering which village was
which. This was mentioned often in the comment box at the end of the survey, and in personal
messages to the researcher. To mitigate at least the second one of these problems, screenshots of
the villages could have been provided to the participants along with the video, so it would have
been easier to remember which is which. Another limitation of this study is that there was only
one village generated per type per biome. It is therefore possible that differences in survey scores
for the different villages is due to the generator randomly performing better in one biome than the
other, and not due to the generator being better suited to one biome over another. However, when
the generator was observed generating villages multiple times, it did not seem to differ wildly in
quality, therefore this is considered less of a concern.

38

Chapter 7

Further research

In this chapter, the possible future work that could be investigated based on this research is
discussed. This future research falls into a few categories: changes to the need-based simulation,
making the results of the generator more aesthetically pleasing, expanding the search, and
application to different fields.

7.1 Simulation

Some experimentation could be done to expand the current simulation method. Firstly: an
interesting avenue to explore could be simplifying certain aspects. Currently, with every tick the
village’s needs lower less depending on how many buildings are already satisfying a specific need.
In the original algorithm, the amount by which needs were lowered each tick was not dependent
on what a sim already had in terms of resources, but was only dependent on what action the
sim was doing, and the general depletion over time [24]. It would be worthwhile to investigate
whether the satisfaction aspect of the needs-based algorithm is necessary at all: it might not even
be required. If this aspect was left out of the simulation, there would be less parameters to tune,
which would be good if the same output quality was kept.

Another possible change to the algorithm, to make it more adaptive, is to change the needs of
the village depending on the environment. A desert village, for example, could have a larger need
for water, and a village built next to a place where a lot of wild animals spawn would have less
need for food. A bigger difference would be made by changing what kinds of buildings satisfy
different needs in different environments. Maybe the village close to a large body of water has
mainly fishing buildings, because that is where that kind of village would naturally get the most
food from, while the mountainous village has some form of rice fields, and the village in the
plains has mostly pastures. By taking the environment more into account, the adaptability would
improve, and therefore it can be assumed that the believability would improve as well.

The needs that were chosen for the current generator are quite arbitrary. There was some
consideration on what every village would need (enough shelter and food for all its inhabitants, for
example), but many of the other needs were chosen because they were achievable with the set of
buildings that was used. The set needs could easily be expanded. Additions that would be advised
to make are: the need for security (satisfied with watchtowers, a village wall), transportation (train
tracks, or easily navigable paths), beauty (flowerbeds). Other buildings could also be added. The
need "social", for example, only has one structure associated with it, which does not allow for
much expressivity.

39

The costs of building a structure could be made more complex. Currently, the only factor
to the costs is the steepness of the terrain on which a new structure will be built. However, by
making the cost of building a structure relate to the type of building built (a pasture does not
take too much resources, while a tower might take much more), the environment that is already
there (it might cost more to build a field with water or a fountain in a dessert) and the other
buildings surrounding it (a lumberjack might decrease the costs of nearby wood construction),
the simulation could get more complex and realistic. This amount of realism could translate into
better believability.

The generator currently only yields its results after all ticks have been completed. However, an
advantage of this generator that can contribute to its believability is the ability to keep adding
buildings to an already existing village, thereby giving the illusion of organic growth. While
difficult to implement in MCEdit, it would be possible to give the results of the generator at
different time-steps, which would mean that how the village is developing over time can be shown.
This would be especially interesting if it could be achieved during gameplay, as it would make a
village feel more alive if you were to leave it, and find that it had grown and developed when you
would return to it.

7.2 Aesthetic Improvements

Improving the aesthetic quality of the generated villages would likely make them more appealing.
The first thing that could be done in order to achieve this goal, is to make the buildings in the
village more visually different. As the generator is now, all house-like buildings look very similar,
and that can be perceived as boring. It would make for better looking villages if the generator was
capable of making places like the crafters and the blacksmith look different from each other and
from the house. It would also improve the generator to be able to add small aesthetic differences
to the houses on other places than just the inside. Perhaps for certain houses different heights
were chosen, or they have a differently shaped roof, or some buildings have a smaller footprint but
are multiple stories. By making the aesthetics of the village more varied, a more believable village
would be generated, since it does make sense that individual villagers would have different tastes.
This could even be adapted to at which tick a particular building was built: earlier buildings could
look more simple, while later buildings could be more elaborate (because a larger village could
mean more wealth), or the other way around (people who have lived in the same place for longer
have had more time to improve their buildings).

7.3 Expanding the Search

The search that was done on finding the right variables for the generator could be improved. It
seemed that the Balanced fitness function was not well-suited for all biomes, since especially the
search area variable did not perform as well in the mesa biome as in the desert biome. Therefore, it
would be worthwhile to change the fitness function; either by using variables that work regardless
of biome, or by adjusting the fitness function to the biome. Perhaps the most believable amount of
houses per square mile is different depending on the biome, so that could be taken into account in
the fitness function (biome dependent), or people prefer seeing all buildings on the same height
level (regardless of biome). These changes to the fitness function could be explored.

The search that was done now was relatively limited in which variables of the generator it
adjusted. It only changed the needs-based variables, and the search area. It would be interesting

40

to investigate changing other variables such as those that influence the starting location for the
village, or biasing the size of the buildings.

The research done in this thesis did not do an extensive optimization of the hyper-parameters
of the evolutionary algorithm. It is possible that better results could be achieved more quickly, if
these were set to different values. Therefore, it could be worthwhile to research the influence of
different values for the hyper-parameters in further research.

7.4 Different Applications

The final category of interesting further research is testing out the generator on other applications.
Other generative open world games might benefit from this type of village generation: a game such
as Rimworld, where players build their own survivalist colonies from a top-down 2D perspective
and can visit neighboring colonies could benefit from this type of village generator. Different
buildings with different functions could be placed in a way that makes sense, and the earlier
mentioned development of villages over time could enhance the experience in this game.

Another application that this village generator could have, is as starting off point for designing
villages in non-generative games, or to design smaller villages in very large games. If the villages
are used as a starting-off point, then generating villages can decrease the work-load on the
designers, since they will only have to tweak the villages instead of building from the ground up.
In the really large open worlds, having a couple villages generated in this way can provide a small
interesting feature to travel towards, with very little development cost.

41

Bibliography

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation in Games: A Textbook
and an Overview of Current Research. Springer, 2016.

[2] J. Steuer, “Defining virtual reality: Dimensions determining telepresence,” Journal of communi-
cation, vol. 42, no. 4, pp. 73–93, 1992.

[3] S. Parkin, “How designers engineer luck into video games,” March 2019. [Online]. Available:
https://nautil.us/issue/70/variables/how-designers-engineer-luck-into-video-games-rp

[4] Mojang, “Minecraft,” https://www.minecraft.net/nl-nl, accessed: 19-08-2021.

[5] C. Salge, M. C. Green, R. Canaan, and J. Togelius, “Generative design in Minecraft (GDMC)
settlement generation competition,” in Proceedings of the 13th International Conference on the
Foundations of Digital Games, 2018, pp. 1–10.

[6] J. Togelius, N. Shaker, and M. J. Nelson, “The search-based approach,” in Procedural Content
Generation in Games: A Textbook and an Overview of Current Research, N. Shaker, J. Togelius, and
M. J. Nelson, Eds. Springer, 2016, pp. 17–30.

[7] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N. Yannakakis, “Multiob-
jective exploration of the starcraft map space,” in Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games. IEEE, 2010, pp. 265–272.

[8] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G. N. Yannakakis, and C. Grappi-
olo, “Controllable procedural map generation via multiobjective evolution,” Genetic Program-
ming and Evolvable Machines, vol. 14, no. 2, pp. 245–277, 2013.

[9] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through player modeling and
track evolution,” 2006.

[10] Y. Kaya, M. Uyar et al., “A novel crossover operator for genetic algorithms: ring crossover,”
arXiv preprint arXiv:1105.0355, 2011.

[11] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, and V. Prasath,
“Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic
approach,” Information, vol. 10, no. 12, p. 390, 2019.

[12] J. Togelius, N. Shaker, and M. J. Nelson, “Mixed-initiative content creation,” in Procedural
Content Generation in Games: A Textbook and an Overview of Current Research, N. Shaker,
J. Togelius, and M. J. Nelson, Eds. Springer, 2016, pp. 195–214.

42

https://nautil.us/issue/70/variables/how-designers-engineer-luck-into-video-games-rp
https://www.minecraft.net/nl-nl

[13] ——, “Evaluating content generators,” in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, N. Shaker, J. Togelius, and M. J. Nelson, Eds. Springer,
2016, pp. 215–224.

[14] G. N. Yannakakis and H. P. Martínez, “Ratings are overrated!” Frontiers in ICT, vol. 2, p. 13,
2015.

[15] T. Archer, “Procedurally generating terrain,” in 44th annual midwest instruction and computing
symposium, Duluth, 2011, pp. 378–393.

[16] A. Cristea and F. Liarokapis, “Fractal nature-generating realistic terrains for games,” in 2015
7th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games).
IEEE, 2015, pp. 1–8.

[17] M. Frade, F. F. de Vega, and C. Cotta, “Automatic evolution of programs for procedural
generation of terrains for video games,” Soft Computing, vol. 16, no. 11, pp. 1893–1914, 2012.

[18] J. Doran and I. Parberry, “Controlled procedural terrain generation using software agents,”
IEEE Transactions on Computational Intelligence and AI in Games, vol. 2, no. 2, pp. 111–119, 2010.

[19] T. Lechner, P. Ren, B. Watson, C. Brozefski, and U. Wilenski, “Procedural modeling of urban
land use,” in ACM SIGGRAPH 2006 Research posters, 2006, pp. 135–es.

[20] C. A. Vanegas, D. G. Aliaga, B. Benes, and P. A. Waddell, “Interactive design of urban spaces
using geometrical and behavioral modeling,” ACM transactions on graphics (TOG), vol. 28,
no. 5, pp. 1–10, 2009.

[21] N. Kato, T. Okuno, A. Okano, H. Kanoh, and S. Nishihara, “An alife approach to modeling
virtual cities,” in SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems,
Man, and Cybernetics (Cat. No. 98CH36218), vol. 2. IEEE, 1998, pp. 1168–1173.

[22] T. B. Mizdal and C. T. Pozzer, “Procedural content generation of villages and road sys-
tem on arbitrary terrains,” in 2018 17th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). IEEE, 2018, pp. 205–2056.

[23] M. B. Temuçin, İ. Kocabaş, and K. Oğuz, “Using cellular automata as a basis for procedural
generation of organic cities,” European Journal of Engineering and Technology Research, vol. 5,
no. 12, pp. 116–120, 2020.

[24] R. Zubek, “Needs-based AI,” Game programming gems, vol. 8, pp. 302–11, 2010.

[25] K. Dill, E. R. Pursel, P. Garrity, G. Fragomeni, and V. Quantico, “Design patterns for the
configuration of utility-based AI,” in Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC), no. 12146, 2012, pp. 1–12.

[26] D. Charypar, A. Horni, and K. W. Axhausen, “Need-based activity planning in an agent-based
environment,” in 12th International Conference on Travel Behaviour Research (IATBR), Jaipur,
2009.

[27] L. Nijland, T. Arentze, and H. Timmermans, “Representing and estimating interactions
between activities in a need-based model of activity generation,” Transportation, vol. 40, no. 2,
pp. 413–430, 2013.

43

[28] C. Salge, M. C. Green, R. Canaan, F. Skwarski, R. Fritsch, A. Brightmoore, S. Ye, C. Cao, and
J. Togelius, “The AI settlement generation challenge in minecraft: First year report,” arXiv
preprint arXiv:2103.14950, 2021.

[29] C. Salge, C. Guckelsberger, M. C. Green, R. Canaan, and J. Togelius, “Generative design in
Minecraft: chronicle challenge,” arXiv preprint arXiv:1905.05888, 2019.

[30] “Generative Design in Minecraft (GDMC),” https://gendesignmc.wikidot.com/, accessed:
17-08-2021.

[31] M. Fridh and F. Sy, “Settlement generation in Minecraft,” 2020.

[32] A. Brightmoore, “GDMC2020 ChronicleChallenge.” [Online]. Available: https://github.com/
abrightmoore/GDMC2020_ChronicleChallenge

[33] H. Jia, S. Ito, and R. Thawonmas, “ICE_JIT.” [Online]. Available: https://www.dropbox.com/
s/apd6utnngm6o3dl/ICE_JIT.pdf?dl=0

[34] “MCEdit.” [Online]. Available: https://www.mcedit.net/

[35] A. Aposolides, S. Broadberry, B. Campbell, M. Overton, and B. van Leeuwen, “English
agricultural output and labour productivity, 1250-1850: some preliminary estimates,” 2008.

[36] P. Toubert, “The carolingian moment (eighth–tenth century),” A History of the Family, vol. 1,
pp. 379–406, 1996.

[37] F. C. Lane, “Before the industrial revolution: European society and economy, 1000-1700,”
1978.

44

https://gendesignmc.wikidot.com/
https://github.com/abrightmoore/GDMC2020_ChronicleChallenge
https://github.com/abrightmoore/GDMC2020_ChronicleChallenge
https://www.dropbox.com/s/apd6utnngm6o3dl/ICE_JIT.pdf?dl=0
https://www.dropbox.com/s/apd6utnngm6o3dl/ICE_JIT.pdf?dl=0
https://www.mcedit.net/

	Introduction
	Concepts
	Procedural Content Generation for videogames
	Believability
	Village

	Motivation
	Problem Statement and Research Questions
	Thesis Outline

	Background and Related Works
	Procedural Content Generation
	Search-based Procedural Content Generation
	Mixed Initiative
	Evaluating Content

	Related work
	Terrain Generation
	Village Generation
	Simulation of Needs

	Generative Design in Minecraft (GDMC)
	Competition
	Grading Criteria
	Chronicle Challenge
	Changes in 2021

	Earlier Submissions

	Building the Generator and Optimization
	Simulation-based village generation
	MCEdit
	Simulation algorithm

	Search-based Approach
	Content Representation
	Selection
	Evaluation Functions

	Experiments and Results
	Training the EA
	Parameters
	Training process
	Results

	Validating Believability
	Survey
	Results

	Conclusion and Discussion
	Further research
	Simulation
	Aesthetic Improvements
	Expanding the Search
	Different Applications

